sparkfun

START SOMETHING

Non-Addressable RGB LED Strip Hookup Guide

Introduction

Note: This tutorial is to control the 12V non-addressable RGB LED strips. If you are using an addressable
LED strip (i.e. WS2812 or APA102), you will need to use a different power supply and a micrcontroller to
control the LEDs.

Add color to your projects with the non-addressable LED strips! These are perfect if you want to add uniform
lighting for your props, car, fish tank, or perhaps under cabinet lighting in your home.

LED RGB Strip - Bare (1m) LED RGB Strip - Bare (5m)
© COM-12021 © COM-12022

LED RGB Strip - Sealed (1m) LED RGB Strip - Sealed (5m)
@ COM-12023 @ COM-12024
Retired Retired

SparkFun 10-11-13 Product Showcase: Strip Mall

Required Materials

To follow along with this tutorial, you will need the following materials. The partial wishlist on the left is for a basic
connection with an Arduino. It does not include the potentiometer and buttons. The full wishlist on the right is for
the full circuit for additional functionality. You may not need everything though depending on what you have. Add it
to your cart, read through the guide, and adjust the cart as necessary.

Partial Wishlist for Non-Addressable RGB LED Strip Hookup Guide SparkFun Wish List

= LED RGB Strip - Sealed (1m)
@ COM-12023

Gone are the days that you have to worry about silicone weather proofing splitting and breaking on you! These ...
SparkFun RedBoard Qwiic
3 DEV-15123

S SparkFun ATX Power Connector Breakout Kit - 12V/5V (4-pin)
N\ KIT-15701

- Alligator Clip with Pigtail (10 Pack)
= CAB-14303

‘.‘. (3) N-Channel MOSFET 60V 30A
COM-10213
If you've ever wondered how to control the headlight of a car from a microcontroller, a MOSFET is what you nee...

Resistor 10K Ohm 1/4 Watt PTH - 20 pack (Thick Leads)
PRT-14491

Breadboard - Self-Adhesive (White)
PRT-12002
This is your tried and true white solderless breadboard. It has 2 power buses, 10 columns, and 30 rows - a total ...

' 4 (2) Jumper Wires Premium 6" M/M - 20 AWG (10 Pack)

L% PRT.11700

— N a2V

Jumper wires are awesome. Just a little bit of stranded core wire with a nice solid pin connector on either end. T...

CAB-10215
USB 2.0 type A to micro USB 5-pin. This is a new, smaller connector for USB devices. Micro USB connectors ar...

USB micro-B Cable - 6 Foot
(O~

Full Wishlist for Non-Addressable RGB LED Strip Hookup Guide SparkFun Wish List

- LED RGB Strip - Sealed (1m)
@ COM-12023

Gone are the days that you have to worry about silicone weather proofing splitting and breaking on you! These are ...
SparkFun RedBoard Qwiic
3 DEV-15123

oS SparkFun ATX Power Connector Breakout Kit - 12V/5V (4-pin)
NVe) KIT-15701

- Alligator Clip with Pigtail (10 Pack)
= CAB-14303

’.. (3) N-Channel MOSFET 60V 30A
COM-10213
If you've ever wondered how to control the headlight of a car from a microcontroller, a MOSFET is what you need. ...

Resistor 10K Ohm 1/4 Watt PTH - 20 pack (Thick Leads)
PRT-14491

COM-09806
There are lots of trimpots out there. Some are very large, some so small they require a screwdriver. Here at SparkF...

‘ Trimpot 10K Ohm with Knob

Multicolor Buttons - 4-pack

&
Uﬁ,‘@ PRT-14460

Breadboard - Self-Adhesive (White)
PRT-12002
This is your tried and true white solderless breadboard. It has 2 power buses, 10 columns, and 30 rows - a total of ...

f (2) Jumper Wires Premium 6" M/M - 20 AWG (10 Pack)

\ PRT-11709

Jumper wires are awesome. Just a little bit of stranded core wire with a nice solid pin connector on either end. The...

USB micro-B Cable - 6 Foot
I/O\ CAB-10215
USB 2.0 type A to micro USB 5-pin. This is a new, smaller connector for USB devices. Micro USB connectors are a...

Microcontroller

To make the most out of your LED strip, you will need a microcontroller. The easiest would be to use the RedBoard
Quwiic but you can use any Arduino microcontroller as long as it has a minimum of three PWM pins.

Arduino Pro Mini 328 - 3.3V/8MHz SparkFun RedBoard Qwiic
@®© DEV-11114 @®© DEV-15123

USB micro-B Cable - 6 Foot
® CAB-10215

Power Supply

To power your LEDs, you will need a 12V power supply. The amount of current needed depends on the length and
density of the LED strip. Below are a few options if you are powering the LEDs from a wall outlet in an installation.
You could also use a 9V power supply. It may not be as bright but your LED strip will not be as hot.

Wall Adapter Power Supply - 12VDC, 600mA SparkFun ATX Power Connector Breakout Kit -
(Barrel Jack) 12V/5V (4-pin)
® TOL-15313 @® KIT-15701

Wires and Connectors

The stranded wires from the non-addressable do not have a connector. For prototyping you could use alligator
clips with male headers. However, it would be easier to use a polarized connector like the ones from the 4-wire
pigtail connector to easily connect and disconnect from your controller.

‘*&«"‘q |

\‘ J
I|I'I " - o
= |
Alligator Clip with Pigtail (10 Pack) Hook-Up Wire - Assortment (Stranded, 22
®© CAB-14303 AWG)

® PRT-11375

LED Strip Pigtail Connector (4-pin)
®© CAB-14576

Transistors

If you are using a microcontroller to control the strip, you will need transistors to control each channel. For small
lengths, you could use NPN transistors. For longer lengths, you could use n-channel mosfets. Just make sure to
get the associated resistors depending on your transistor.

&
Ge

SparkFun MOSFET Power Control Kit N-Channel MOSFET 60V 30A
© COM-12959 ®© COM-10213

Transistor - NPN, 60V 200mA (2N3904) Transistor - NPN, 60V 4A (2N5192G)
® COM-00521 ® COM-13951
Input

For options to adjust the color and brightness of your LED strip, you could use the following with a microcontroller.

<@

Trimpot 10K Ohm with Knob Multicolor Buttons - 4-pack
® COM-09806 @®© PRT-14460
Tools

You will need a soldering iron, solder, and general soldering accessories. You may also need some wire strippers if
you are cutting and reusing parts of the strip.

Soldering Iron - 60W (Adjustable Temperature) Solder Lead Free - 15-gram Tube
@© TOL-14456 @® TOL-09163

Wire Strippers - 22-30AWG
@ TOL-14762
Retired

Suggested Reading

If you aren’t familiar with the following concepts, we recommend checking out these tutorials before continuing. If
you are looking to customize the control by programming a microcontroller, we recommend looking at the

SparkFun Inventor's Kit for Arduino.

Pulse Width Modulation
An introduction to the concept of Pulse Width

Modulation.

LED Light Bar Hookup
A quick overview of SparkFun's LED light bars, and

some examples to show how to hook them up.

Light-Emitting Diodes (LEDs)

Learn the basics about LEDs as well as some more
advanced topics to help you calculate requirements for
projects containing many LEDs.

Transistors
A crash course in bi-polar junction transistors. Learn

how transistors work and in which circuits we use them.

SparkFun Inventor's Kit Experiment Guide - v4.1
The SparkFun Inventor's Kit (SIK) Experiment Guide
contains all of the information needed to build all five
projects, encompassing 16 circuits, in the latest version
of the kit, v4.1.

Hardware Overview

The non-addressable RGB LED strips are also referred to as analog LED strips. Each channel has three LEDs
wired in series with a current limiting resistor. Each segment contains three common anode RGB LED ICs that are
connected in parallel. These are used more on strips. While these operate at 12V, they can also light up with 9V.

#

RGB Strip LED1

T
¥y

\\'E'
D2R ww, LEC

——<
wy, LED2

LED2G wae, LEL

wx, LED2E
|Q

W LEDTR wi LE
wx, LEDTG

l L EC

'\\l.i: D1B
fé

=iy
s
~r

-l O

Note: For more information, check out this forum post in Stack Exchange!

STACK EXCHANGE | ELECTRICAL ENGINEERING:
WHY ARE MOST RGB LED STRIPS COMMON ANODE INSTEAD OF COMMON CATHODE?

Hardware Hookup
We'll be using a common anode RGB LED strip. There are a few methods of lighting the LED strip:

« straight power

* 555 Timer

» pre-programmed controller box

» microcontroller/single board computer

Below are three of these methods. For the scope of this tutorial, we will be using the third circuit diagram.

Hookup 1: Straight Power!

4> Note: While the LED strip is labeled 12V, a 9V power supply was used so that the LEDs were not
overwhelmingly bright. At 9V, it also did not dissipate as much heat.

The simplest method of using non-addressable LEDs to illuminate your project is to add power to your LED strip.
You will just need to make a connection between the female barrel jack adapter and the non-addressable LED
strip. Simply insert the black wire connecting the "12V" pin to the "+" of the barrel jack adapter's screw terminal for
power. Then insert the wire or your choice into the "-" screw terminal. In the following hookup, all channels were
connected to ground to mix the color of white.

| — ’i‘
|

+;;~ | —

e ——
w..|!!..'., ‘

fritzing

Click the image for a closer look.

Note: When testing the non-addressable LED strip, the pin labeled "G" was actually blue and the "B" was
actually green. Depending on the manufacturer, the label may vary. Try testing the LED strip out with a power
supply to determine if the letter represents the color.

Depending on your project and color that you are illuminating, you will need to ground each respective channel.
Here are some basic colors that you could mix by grounding different pins. The tradeoff is that you are limited to
seven colors and will need to adjust the connection every time you need to change the color. For projects that do
not require that many colors, this would be the best setup.

Note: Instead of disconnecting and reconnecting each wire, try adding a switch between each channel to mix
colors. Just make sure the switch is rated appropriately.

Hookup 2: Preprogrammed Controller Box

For those that are interested in a preprogrammed controller to easily control the non-addressable LED strip with a
controller, you could use the Mi-Light remote and controller box. You will simply need to connect power through the
barrel jack and tighten the screws for each channel. The controller box includes an additional "white" channel for
LED strips with that have an the color.

Mi-Light 4-Zone LED Remote Controller
@ COM-14711
Retired

Mi-Light RGBW LED Controller Box
® COM-14710

For more information, check out the video below!

Product Showcase: Mi-Light 4-Zone LED Remote Controller & Co...

Hookup 3: Microcontroller

For those that want a little bit more flexibility and control over the LEDs, you can use a microcontroller. We'll be

using a RedBoard Qwiic with the ATmega328P. You can use different microcontollers (i.e. AVR, ARM, micro:bit,
ESP8266, ESP32, etc.) or single board computer (i.e. Raspberry Pi) as long as it can output a PWM signal. You
just need a transistor since the logic level is lower than the voltage of the LED strip and the pins are not able to

source enough current. The code (i.e. MakeCode, Python, etc.) depends on the microcontroller or single board

computer. For the scope of the tutorial, we will be using the Arduino language to control the LEDs.

Heads up! Single board computers like the Raspberry Pi are limited in the number of PWM pins. If you are
using a single board computer, you would probably need a dedicated PWM chip or DAC to control all three
channels of the RGB LED strip. You could also try to use software PWM on a Pi.

Typically for common anode RGB LED strips, you could use NPN BJTs or N-channel MOSFETs as a switch. N-
channel mosfets usually can handle more power and they are more power efficient. Therefore, we'll be adding the
load on the high side. Each color channel requires a transistor to switch. The hookup diagram for a basic
connection is shown on the left. For additional functionality, you could add buttons and a potentiometer to control
the LEDs. For testing purposes, we'll use a breadboard, jumper wires, and alligator clips to connect. You'll
eventually want to solder the LED strip to header pins, a prototyping board, or splice a 4-pin pigtail connector for a
secure connection when using it in an installation.

fritzing

Basic Arduino Hookup w/ N Channel MOSFETS Buttons and Potentiometers Added for Additional
Functionality

Click image for a closer look

Note: If you are using small lengths of the RGB LED strip, you can also use NPN transistors as long as you
are not exceeding the maximum current rating for the transistor. The following diagrams in this note used
NPN transistors had pins from the left that were arranged as CBE with respect to the flat side facing you.

CLICK TO SEE CIRCUIT USING NPN TRANSISTOR

By using a PWM output from a microcontroller and transistor to adjust the brightness of each color channel
individually, the RGB LED can display almost any color you choose! For simplicity, we'll limit the colors to twelve
colors and white on an Arduino. The following values in the diagram will create the primary, secondary, and tertiary
colors.

Chartreuse

When using long strands, it is recommended to have a separate power supply for the Arduino and LEDs. Your
setup should look similar to the image below on a breadboard if you are using a 12V/5V, 2A power supply and a
5M LED strip. The setup is the same except VIN is disconnected on the 12V. The Arduino is using its own 5V
power. When programming the Arduino, it is recommended to disconnect the 5V pin so that you do not have
conflicting power sources.

After you are done programming, you can remove the USB cable and connect the 12V/5V power supply's 5V pin
to the circuit.

Arduino Example Code

Note: This example assumes you are using the latest version of the Arduino IDE on your desktop. If this is
your first time using Arduino, please review our tutorial on installing the Arduino IDE.

To follow along, check out the GitHub repository. There are five examples in the repo. Two of which are simple
examples to turn on a certain color based on the type of LED that you are using. We'll go over the other three
examples.

DOWNLOAD GITHUB CODE REPO (ZIP)

The three examples from this GitHub Repo that we will go over are listed below. Click on one of the links below to
jump to the example!

e Custom Color Cycling
» Fading
» Full Demo

Note: While the example code included in the tutorial was written for analog LED strips, this can also work for
individual common anode LEDs, common cathode LEDs, and high power RGB LEDs as well!

Clear Common Anode RGB LED- 5mm Diffused Common Cathode RGB LED- 10mm SMD (

Just make sure to check the datasheet to verify that there are channels for each color and include the
appropriate parts if you are connecting them to a microcontroller.

Example 1: Custom Color Cycling

This code will cycle through 12 colors and white. This is useful to test to see if you wired the colors correctly or
want to show a color. There are options to adjust the brightness, type of LED, and rate at which the colors cycle.

If you have not already, unzip the GitHub repo and open the example code called Example1_RGB-CycleLED.ino.
The path of the example code will probably look similar to: ...\ Non-Addresssable_RGB_LED_Strip_Code \
Firmware \ Arduino \ Example1_RGB-CycleLED. You can also copy the code below and paste it into the
Arduino IDE. Select the board (in this case the Arduino/Genuino Uno) and COM port that the board enumerated
to. Then hit the upload button to upload to your Arduino.

[KRR AR K K K KKK KKK K K K KK S K oK KKK K K K K oK K oK K oK K oK Ko KKK oK K oK K S K oK KK Ko KK oK oK K o K o

Examplel_RGB-CycleLED.ino

Non-Addressable RGB LED Custom Color Cycle
WRITTEN BY: Ho Yun "Bobby" Chan @ SparkFun Electronics
DATE: November 4, 2019
GITHUB REPO: https://github.com/sparkfun/Non-Addresssable_RGB_LED_Strip_Code
DEVELOPMENT ENVIRONMENT SPECIFICS:
Firmware developed using Arduino IDE v1.8.9

==========z===z======z==z=z======== DESCRIPTION ========z========z==z==============
Expand your color options using analogWrite() and a non-addressable RGB LED.
This code will cycle through 12 colors and white. There are options to adjust
the brightness, type of LED, and rate at which the colors cycle.

This example code works with an individual common anode and common cathode
RGB LED. If you have a transistor or constant current LED driver, you can
also use it to control an RGB LED strip or a higher power RGB LED.

We'll assume that you are using a common anode LEDs in the strip. For more
information checkout our tutorial: https://learn.sparkfun.com/tutorials/731

Notes: There are twelve rainbow colors (primary, secondary, tertiary).

Unlike digitalWrite(), which can be only HIGH (on) or LOW (off),

analogWrite() lets you smoothly change the brightness from @ (off) to 255 (fully on).
When analogWrite() is used with the RGB LED, you can create millions of colors!

For simplicity, we'll use 12 rainbow colors and white. We will be blinking

between each color.

In the analogWrite() functions:
0 is off
128 is halfway on (used for the tertiary colors)
255 is full brightness.

========== TUTORIAL ==========
Non-Addressable RGB LED Strip Hookup Guide
https://learn.sparkfun.com/tutorials/731

Transistors | Applictions I: Switches
https://learn.sparkfun.com/tutorials/transistors/all#applications-i-switches

==================== PRODUCTS THAT USE THIS CODE ====================
LED RGB Strip (1M Bare) - https://www.sparkfun.com/products/12021
LED RGB Strip (1M Sealed) - https://www.sparkfun.com/products/12023
LED RGB Strip (5B Bare) - https://www.sparkfun.com/products/12022
LED RGB Strip (5M Sealed) - https://www.sparkfun.com/products/12024
Triple Output High Power RGB LED - https://www.sparkfun.com/products/15200

PicoBuck LED Driver - https://www.sparkfun.com/products/13705
N-Channel MOSFET Power Control Kit - https://www.sparkfun.com/products/12959

S====S============== HARDNARE CONNECTIONS S =================
The hardware connection depends on your hardware and setup. Below is one possible

arrangement.

RGB Common Anode LED Strip => BJT/MOSFET => Arduino PWM Pin
R pin => transistor => 5
G pin => transistor => 6
B pin => transistor => 9
- pin -

LICENSE: This code is released under the MIT License (http://opensource.org/licenses/MIT)

**/

//Debug mode, comment one of these lines out using a syntax
//for a single line comment ("//"):

//#define DEBUG © //© = LEDs only

#define DEBUG 1 //1 = LEDs w/ serial output

// Define our LED pins to a PWM Pin
#define redPin 5

#define greenPin 6

#define bluePin 9

// Create integer variables for our LED color value
int redValue = 0;

int greenValue = 0;

int blueValue = ©;

//Create brightness variable
//Ranging from 0.0-1.0:

// ©.0 is off

// 0.5 is 50%

// 1.0 is fully on

float brightnessLED = 0.1;

//Create variables for type of LED and if it is used with a transistor

boolean commonAnode = false;

boolean commonCathode = true; //i.e.) When pin is HIGH, LED will also go HIGH without a transist
or/PicoBuck

// Note:

// Common Anode is "~ commonAnode’

// Common Cathode LED is " commonCathode”

// Common Anode RGB LED Strip with transistor is ~!commonAnode”
// RGB High Power LED with PicoBuck is also ~ !commonAnode’
boolean rgbType = !commonAnode;

int blinkRate = 1000; //in milliseconds

void setup() {

// Make all of our LED pins outputs:
pinMode(redPin, OUTPUT);
pinMode(greenPin, OUTPUT);
pinMode(bluePin, OUTPUT);

allOFF(); //initialize LEDs with it turned off
rgbCalc();//calculate for RGB type
rgbShow(); //make sure to show it happening

#if DEBUG

Serial.begin(9600); //initialize Serial Monitor

//while (!Serial); // Comment out to wait for serial port to connect to Serial Monitor. Option
for native USB.

Serial.println("Custom Color Cycling w/ an RGB LED. This example will cycle through 13 color
s.");

Serial.println(" ");

Serial.println("Note: Make sure to adjust the code for a common cathode or common anode.");

Serial.println(" ");
#endif

}//end setup()

void loop()
{

//used to visually check when Arduino is initialized
#if DEBUG

Serial.print("RED");

Serial.print(" | Brightness % = ");

Serial.println(brightnessLED * 100);
#endif

redON();

rgbCalc();

rgbShow();

delay(blinkRate);

#if DEBUG
Serial.print("ORANGE");
Serial.print(" | Brightness % = ");
Serial.println(brightnessLED * 100);
#endif
orangeON();
rgbCalc();
rgbShow();
delay(blinkRate);

#if DEBUG
Serial.print("YELLOW");
Serial.print(" | Brightness % = ");
Serial.println(brightnessLED * 100);

#endif
yellowON();
rgbCalc();
rgbShow();
delay(blinkRate);

#if DEBUG
Serial.print("CHARTRUESE");
Serial.print(" | Brightness % = ");
Serial.println(brightnessLED * 100);
#endif
chartrueseON();
rgbCalc();
rgbShow();
delay(blinkRate);

#if DEBUG
Serial.print("GREEN");
Serial.print(" | Brightness % = ");
Serial.println(brightnessLED * 100);
#endif
greenON();
rgbCalc();
rgbShow();
delay(blinkRate);

#if DEBUG
Serial.print("SPRING GREEN");
Serial.print(" | Brightness % = ");
Serial.println(brightnessLED * 100);
#endif
springGreenON();
rgbCalc();
rgbShow();
delay(blinkRate);

#if DEBUG

Serial.print("CYAN");

Serial.print(" | Brightness % = ");

Serial.println(brightnessLED * 100);
#endif

cyanON();

rgbCalc();

rgbShow();

delay(blinkRate);

#if DEBUG
Serial.print("AZURE");
Serial.print(" | Brightness % = ");
Serial.println(brightnessLED * 100);
#endif
azureON();

rgbCalc();
rgbShow();
delay(blinkRate);

#if DEBUG

Serial.print("BLUE");

Serial.print(" | Brightness % = ");

Serial.println(brightnessLED * 100);
#endif

blueON();

rgbCalc();

rgbShow();

delay(blinkRate);

#if DEBUG
Serial.print("VIOLET");
Serial.print(" | Brightness % = ");
Serial.println(brightnessLED * 100);
#endif
violetON();
rgbCalc();
rgbShow();
delay(blinkRate);

#if DEBUG
Serial.print("MAGENTA");
Serial.print(" | Brightness % = ");
Serial.println(brightnessLED * 100);
#endif
magentaON();
rgbCalc();
rgbShow();
delay(blinkRate);

#if DEBUG

Serial.print("ROSE");

Serial.print(" | Brightness % = ");

Serial.println(brightnessLED * 100);
#endif

roseON();

rgbCalc();

rgbShow();

delay(blinkRate);

#if DEBUG
Serial.print("WHITE");
Serial.print(" | Brightness % = ");
Serial.println(brightnessLED * 100);
#endif
whiteON();
rgbCalc();
rgbShow();

delay(blinkRate);

#if DEBUG

Serial.print("OFF");

Serial.print(" | Brightness % = ");

Serial.println(brightnessLED * 100);
#endif

allOFF();

rgbCalc();

rgbShow();

delay(blinkRate);

}//end loop

// ==================== CUSTOM FUNCTIONS DEFINED BELOW ====================
void allOFF() {

// Black (all LEDs off)

// RGB LEDs:

redValue = 0;

greenValue = 0;

blueValue = 0;

void redON() {
// Red
redValue = 255;
greenValue = 0O;
blueValue = 0;

void orangeON() {
// Orange
redValue = 255;
greenValue = 128;
blueValue = 0;

void yellowON() {
// Yellow
redValue = 255;
greenValue = 255;
bluevalue = 9;

void chartrueseON() {
// Chartruese
redValue = 128;
greenValue = 255;
blueValue = 0;

void greenON() {
// Green
redValue = 0;
greenValue = 255;
blueValue = 0;

void springGreenON() {
// Spring Green
redValue = 0;
greenValue = 255;
blueValue = 128;

void cyanON() {
// Cyan
redvValue = 0;
greenValue = 255;
blueValue = 255;

void azureON() {
// Azure
redValue = 0;
greenValue = 128;
blueValue = 255;

void blueON() {
// Blue
redValue = 0;
greenValue = 0;
blueValue = 255;

void violetON() {
// Violet
redValue = 128;
greenValue = 0;
blueValue = 255;

void magentaON() {
// Magenta
redValue = 255;
greenValue = 0;
blueValue = 255;

void roseON() {
// Rose

redValue = 255;
greenValue = 0;
blueValue = 128;

void whiteON() {
// White (all LEDs on)
redValue = 255;
greenValue = 255;
blueValue = 255;

void rgbCalc() {
//use this to correctly light up LED depending on the setup
if (rgbType == commonAnode) {
/* If using a common anode LED, a pin
should turn ON the LED when the pin is LOW.*/
redValue = 255 - redValue;
greenValue = 255 - greenValue;
bluevValue = 255 - blueValue;

}
else {
/* If using a common cathode LED, an analog pin
should turn on the LED when the pin is HIGH. The
logic is flipped when using a Common Anode RGB LED
strip, NPN BJT/N-Channel MOSFET, and microcontroller

Leave RGB values as is, we're good!*/

redvValue = int(redValue * brightnessLED);
greenValue = int(greenValue * brightnessLED);
blueValue = int(blueValue * brightnessLED);

void rgbShow() {
//once value is calculated, show the LED color
analogWrite(redPin, redValue);
analogWrite(greenPin, greenValue);
analogWrite(bluePin, blueValue);

Once the code has been uploaded, the RGB LED will cycle through each of the 12 colors, white, and then turn off.
Each color has its own function. When the function is called, the custom color will have a certain analog value for
red, green, and blue. Before displaying the color, the values are calculated depending on the type of LED being
used (either a common cathode or common anode). By default, we are assuming that the strip uses common
anode LEDs but we are using a transistor to control them so rgbType is setto !commonAnode . The color is further
calculated based on the intensity of the LED. After calculating the LED color lights up whenever the function
rgbShow() is called.

Open the Arduino Serial Monitor set to 9600 baud to see the output as the color changes. Try adjusting the
brightness or blink rate. If you are not seeing the correct color associated with the output, make sure to check your
connections and ensure that the correct type of RGB LED is selected.

Example 2: Fading

This code will fade through 12 colors and white. There are options to adjust the brightness, type of LED, and rate
at which the colors fade.

If you have not already, unzip the GitHub repo and open the example code called Example2_RGB-FadeLED.ino.
The path of the example code will probably look similar to: ...Non-
Addresssable_RGB_LED_Strip_Code\Firmware\Arduino\Example2_RGB-FadeLED.ino. You can also copy
the code below and paste it into the Arduino IDE. Select the board (in this case the Arduino/Genuino Uno) and
COM port that the board enumerated to. Then hit the upload button to upload to your Arduino.

[KRR AR AR K K KKK KKK K KK KK KK oK KKK K K K K oK K oK K KK oK Ko KKK KoK K oK K o K oK KoK Ko KK oK oK K o K o

Example2_RGB-FadelLED.1ino

Non-Addressable RGB LED Custom Color Fade
WRITTEN BY: Ho Yun "Bobby" Chan @ SparkFun Electronics
DATE: November 4, 2019
GITHUB REPO: https://github.com/sparkfun/Non-Addresssable_RGB_LED_Strip_Code
DEVELOPMENT ENVIRONMENT SPECIFICS:
Firmware developed using Arduino IDE v1.8.9

==========z==z========z=z======== DESCRIPTION ========z======z==z==z===z===========
Expand your color options using analogWrite() and a non-addressable RGB LED.
This code will fade through 12 colors and white. There are options to adjust
the brightness, type of LED, and rate at which the colors fade.

This example code works with an individual common anode and common cathode
RGB LED. If you have a transistor or constant current LED driver, you can
also use it to control an RGB LED strip or a higher power RGB LED.

We'll assume that you are using a common anode LEDs in the strip. For more
information checkout our tutorial: https://learn.sparkfun.com/tutorials/731

Notes: There are twelve rainbow colors (primary, secondary, tertiary).

Unlike digitalWrite(), which can be only HIGH (on) or LOW (off),

analogWrite() lets you smoothly change the brightness from @ (off) to 255 (fully on).
When analogWrite() is used with the RGB LED, you can create millions of colors!

For simplicity, we'll use 12 rainbow colors and white. We will be fading

between each color.

In the analogWrite() functions:
0 is off
128 is halfway on (used for the tertiary colors)
255 is full brightness.

========== TUTORIAL ==========
Non-Addressable RGB LED Strip Hookup Guide
https://learn.sparkfun.com/tutorials/731

Transistors | Applictions I: Switches
https://learn.sparkfun.com/tutorials/transistors/all#applications-i-switches

==================== PRODUCTS THAT USE THIS CODE ====================
LED RGB Strip (1M Bare) - https://www.sparkfun.com/products/12021
LED RGB Strip (1M Sealed) - https://www.sparkfun.com/products/12023
LED RGB Strip (5B Bare) - https://www.sparkfun.com/products/12022
LED RGB Strip (5M Sealed) - https://www.sparkfun.com/products/12024
Triple Output High Power RGB LED - https://www.sparkfun.com/products/15200

PicoBuck LED Driver - https://www.sparkfun.com/products/13705
N-Channel MOSFET Power Control Kit - https://www.sparkfun.com/products/12959

S====S============== HARDNARE CONNECTIONS S =================
The hardware connection depends on your hardware and setup. Below is one possible

arrangement.

RGB Common Anode LED Strip => BJT/MOSFET => Arduino PWM Pin
R pin => transistor => 5
G pin => transistor => 6
B pin => transistor => 9
- pin -

LICENSE: This code is released under the MIT License (http://opensource.org/licenses/MIT)

**/

//Debug mode, comment one of these lines out using a syntax
//for a single line comment ("//"):

//#define DEBUG © //© = LEDs only

#define DEBUG 1 //1 = LEDs w/ serial output

// Define our LED pins to a PWM Pin
#define redPin 5

#define greenPin 6

#define bluePin 9

// Create integer variables for our LED color value
int redValue = 0;

int greenValue = 0;

int blueValue = ©;

//Create brightness variable
//Ranging from 0.0-1.0:

// 0.0 is off

// 0.5 is 50%

// 1.0 is fully on

float brightnessLED = 0.1;

//Create variables for type of LED and if it is used with a transistor

boolean commonAnode = false;

boolean commonCathode = true;//i.e.) When pin is HIGH, LED will also go HIGH without a transisto
r/PicoBuck

// Note:

// Common Anode is "~ commonAnode’

// Common Cathode LED is " commonCathode”

// Common Anode RGB LED Strip with transistor is ~!commonAnode”
// RGB High Power LED with PicoBuck is also ~ !commonAnode’
boolean rgbType = !commonAnode;

int colorMode = 1; //color mode to control LED color

//Variables for fading LED
int prevFadeval = 0;

int currentFadeVal = 0;
boolean increasing = true;

int fadeval = 5; //value to step when increasing/decreasing, recommended to be 1 or 5, larger nu
mbers will have problems lighting up

int fadeMAX = 255; //maximum fade value

int fadeMIN = ©; //minimum fade value

int fadeDelay = 30;//delay between each step

void setup() {

// Make all of our LED pins outputs
pinMode(redPin, OUTPUT);
pinMode(greenPin, OUTPUT);
pinMode(bluePin, OUTPUT);

allOFF(); //make sure to initialize LEDs with it turned off
rgbCalc();//calculate for RGB type
rgbShow(); //make sure to show it happening

#if DEBUG

Serial.begin(9600); //initialize Serial Monitor

//while (!Serial); // Comment out to wait for serial port to connect to Serial Monitor. Option
for native USB.

Serial.println("Custom Color Fading w/ an RGB LED.");

Serial.println(" ");

Serial.println("Note: Make sure to adjust the code for a common cathode or common anode.");
Serial.println(" ");
#endif

}//end setup()

void loop()
{

switch (colorMode) {
case [L:]//FADE RED

redValue = currentFadeVal;
greenValue = 0;
blueValue = 0;

rgbCalc();
break;

case [2:]//FADE ORANGE
redValue = currentFadeVal;
greenValue = currentFadevVal * 0.498; // 128/255 = ~0.498039
blueValue = 9;

rgbCalc();

if (redvalue > @ && greenValue == 0) {
//tertiary component is 1/2, so when it calculates to decimal with fade value,
//it will be basically be off, make sure to turn off other color so that
//it does not just show the other color
redValue = 0;

// takes x amount of steps if you do not set it to zero for certain brightness (i.e. takes
8 more steps to turn off for 0.1)

//Serial.print("Red Value =");

//Serial.println(int((currentFadeVal) * brightnessLED));

//Serial.print("Green Value =");

//Serial.println(int((currentFadeVal * ©.498) * brightnessLED));

break;

case [3:]//FADE YELLOW
redValue = currentFadeVal;
greenValue = currentFadeVal;
blueValue = 9;

rgbCalc();
break;

case [4:]//FADE CHARTRUESE
redValue = currentFadeVal * 0.498; // 128/255 = ~0.498039
greenValue = currentFadeVal;
blueValue = 9;

rgbCalc();

if (greenValue > 0 && redValue == 0) {
//tertiary component is 1/2, so when it calculates to decimal with fade value,
//it will be basically be off, make sure to turn off other color so that
//it does not just show the other color
greenValue = 0;

case [5:]//FADE GREEN
redValue = 0;
greenValue = currentFadeVal;
blueValue = 9;

rgbCalc();
break;
//:::::::::: END FADE GREEN ==========

case [6:]//FADE SPRING GREEN
redValue = 0;
greenValue = currentFadeVal;
bluevalue = currentFadeval * 0.498; // 128/255 = ~0.498039

rgbCalc();

if (greenValue > 0 && blueValue == 9) {
//tertiary component is 1/2, so when it calculates to decimal with fade value,
//it will be basically be off, make sure to turn off other color so that
//it does not just show the other color
greenValue = 0;

case [7:]//FADE CYAN
redValue = 0;
greenValue = currentFadeVal;
blueValue = currentFadeVal;

rgbCalc();
break;

case [8:]//FADE AZURE
redvValue = 0;
greenValue = currentFadeVal * 0.498; // 128/255 = ~0.498039
blueValue = currentFadeVal;

rgbCalc();

if (blueValue > @ && greenValue == 9) {
//tertiary component is 1/2, so when it calculates to decimal with fade value,
//it will be basically be off, make sure to turn off other color so that
//it does not just show the other color
blueValue = 0;

case [0:]//FADE BLUE
redValue = 0;
greenValue = 0;
blueValue = currentFadeVal;

rgbCalc();

break;

case [10:]//FADE VIOLET
redValue = currentFadeVal * 0.498;

greenValue = 0;
blueValue = currentFadeVal;

rgbCalc();

if (blueValue > 0 && redValue == 0) {
//tertiary component is 1/2, so when it calculates to decimal with fade value,
//it will be basically be off, make sure to turn off other color so that
//it does not just show the other color
blueValue = 0;

//:::::::::: END FADE VIOLET ==========

case [11:]//FADE MAGENTA

redValue = currentFadeVal;
greenValue = 0;
blueValue = currentFadeVal;

rgbCalc();
break;

case [12:]//FADE ROSE
redvValue = currentFadeVal;
greenValue = 0;
blueValue = currentFadeVal * ©.498;

rgbCalc();

if (redvalue > 0 && blueValue == 0) {
//tertiary component is 1/2, so when it calculates to decimal with fade value,
//it will be basically be off, make sure to turn off other color so that
//1it does not just show the other color
redValue = 0;

case [L3:]//FADE WHITE
redValue = currentFadeVal;
greenValue = currentFadeVal;
blueValue = currentFadeVal;

rgbCalc();
break;

allOFF();
rgbCalc();
break;

#if DEBUG

Serial.print("Color Fading = ");

if (colorMode == 1) {
Serial.print("RED");

}

else if (colorMode == 2) {
Serial.print("ORANGE");

}

else if (colorMode == 3) {
Serial.print("YELLOW");

}

else if (colorMode == 4) {
Serial.print("CHARTRUESE");

}

else if (colorMode == 5) {
Serial.print("GREEN");

b

else if (colorMode == 6) {
Serial.print("SPRING GREEN");

)

else if (colorMode == 7) {
Serial.print("CYAN");

}

else if (colorMode == 8) {
Serial.print("AZURE");

)

else if (colorMode == 9) {
Serial.print("BLUE");

¥

else if (colorMode == 10) {
Serial.print("VIOLET");

b

else if (colorMode == 11) {
Serial.print("MAGENTA");

}

else if (colorMode == 12) {
Serial.print("ROSE");

}

else if (colorMode == 13) {
Serial.print("WHITE");

}

else {
Serial.print("OFF");

}

Serial.print(" | Brightness % = ");

Serial.print(brightnessLED * 100);

Serial.print("%");

Serial.print(" | Fade Val Before Calc= ");
Serial.println(currentFadeVval);
#tendif

rgbShow();
delay(fadeDelay);

if (increasing == true) {
//increasing
currentFadeVal += fadeVval;

}
else {

//decreasing
currentFadeVal -= fadeVal;

}

if (currentFadeval > fadeMAX) {
increasing = false;
prevFadevVal -= fadeVal;//undo addition

currentFadeVal = prevFadeval;

}
else if (currentFadeval < fadeMIN) {

increasing = true;
prevFadeVal += fadeVal;//undo subtraction

currentFadeVal = prevFadeval;

colorMode += 1;//next color
if (colorMode > 13) {
colorMode = 9;

prevFadeVal = currentFadeVal;

}//END LOOP

// ==================== CUSTOM FUNCTIONS DEFINED BELOW ====================
void allOFF() {

// Black (all LEDs off)

// RGB LEDs:

redValue = 0;

greenValue = 0O;

blueValue = 0;

rgbCalc();

void redON() {

// Red
redValue = 255;
greenValue = 0;

blueValue = 0;

rgbCalc();

void orangeON() {
// Orange
redValue = 255;
greenValue = 128;
blueValue = 0;

rgbCalc();

void yellowON() {
// Yellow
redValue = 255;
greenValue = 255;
blueValue = 0;

rgbCalc();

void chartrueseON() {
// Chartruese
redValue = 128;
greenValue = 255;
blueValue = 0;

rgbCalc();

void greenON() {
// Green
redValue = 0;
greenValue = 255;
blueValue = 0;

rgbCalc();

void springGreenON() {
// Spring Green
redValue = 0;
greenValue = 255;
blueValue = 128;

rgbCalc();

void cyanON() {
// Cyan
redValue = 0;
greenValue = 255;
blueValue = 255;

rgbCalc();

void azureON() {
// Azure
redValue = 0;
greenValue = 128;
blueValue = 255;

rgbCalc();

void blueON() {
// Blue
redValue = 0;
greenValue = 0;
blueValue = 255;

rgbCalc();

void violetON() {
// Violet
redValue = 128;
greenValue = 0;
blueValue = 255;

rgbCalc();

void magentaON() {
// Magenta
redValue = 255;
greenValue = 0;
bluevalue = 255;

rgbCalc();

void roseON() {
// Rose
redValue = 255;
greenValue = 0;

blueValue = 128;

rgbCalc();

void whiteON() {
// White (all LEDs on)
redValue = 255;
greenValue = 255;
blueValue = 255;

rgbCalc();

void rgbCalc() {
//use this to correctly light up LED depending on the setup
if (rgbType == commonAnode) {
/* If using a common anode LED, a pin
should turn ON the LED when the pin is LOW.*/
redvalue = 255 - redValue;
greenValue = 255 - greenValue;
blueValue = 255 - blueValue;

}
else {
/* If using a common cathode LED, an analog pin
should turn on the LED when the pin is HIGH. The
logic is flipped when using a Common Anode RGB LED
strip, NPN BJT/N-Channel MOSFET, and microcontroller

Leave RGB values as is, we're good!*/

redvalue = int(redValue * brightnessLED);
greenValue = int(greenValue * brightnessLED);
blueValue = int(blueValue * brightnessLED);

void rgbShow() {
//once value is calculated, show the LED color
analogWrite(redPin, redvalue);
analogWrite(greenPin, greenValue);
analogWrite(bluePin, blueValue);

Once the code has been uploaded, you should see the colors fading in and out. Open the serial monitor at 9600 to
see what color is fading and its respective fade value. Due to the calculations and serial output, the fading can
appear to be slow. You may want to adjust the baud rate to a higher value like 775200, adjust the fade delay, or
turn off the debugging by defining DEBUG as o . Additionally, the LEDs may turn off if the fade value and

brightness is too small. This is due to the minimum voltage required to turn on the LEDs. You should see
something similar to the GIF below. The GIF repeats a small sample of the colors fading. You will see all of the
colors cycling in your setup.

Example 3: Full Demo

Note: This example uses the full circuit to control the LED using buttons and a potentiometer. By default, the
potentiometer is commented out. Simply uncomment the code by removing the // in front of this line of
code.

//brightnessLED = analogRead(knobPin) / 1023.9; //potentiometer for Brightness

If there isn't an analog input connected, the pin will be floating. As a result, the LED's brightness will fluctuate
everytime the analog pin is read in the main loop() .

This code will turn on a color, blink, fade, or cycle through 12 colors depending on the button input. The color cycle
used in this demo will fade between each of the 12 colors. There are options to adjust the brightness, type of LED,
and rate at which the colors cycle. The RedBoard will only change the color and pattern after pressing the button
again.

If you have not already, unzip the GitHub repo and open the example code called Example3_RGB-
FullDemoLED.ino. The path of the example code will probably look similar to: ...Non-
Addresssable_RGB_LED_Strip_Code\Firmware\Arduino\Example3_RGB-FullDemoLED. You can also copy
the code below and paste it into the Arduino IDE. Select the board (in this case the Arduino/Genuino Uno) and
COM port that the board enumerated to. Then hit the upload button to upload to your Arduino.

[KRR AR AR K K KKK KKK K KK KK KK oK KKK K K K K oK K oK K KK oK Ko KKK KoK K oK K o K oK KoK Ko KK oK oK K o K o

Example3_RGB-FullDemoLED.ino

Non-Addressable RGB LED Full Demo
WRITTEN BY: Ho Yun "Bobby" Chan @ SparkFun Electronics
DATE: November 4, 2019
GITHUB REPO: https://github.com/sparkfun/Non-Addresssable_RGB_LED_Strip_Code
DEVELOPMENT ENVIRONMENT SPECIFICS:
Firmware developed using Arduino IDE v1.8.9

==========z==z========z=z======== DESCRIPTION ========z======z==z==z===z===========
Expand your color options using analogWrite() and a non-addressable RGB LED.
This code will either turn on a color, blink, fade, or cycle through 12
colors and white depending on the button input. There are options to adjust
the brightness, type of LED, and rate at which the colors blink/fade/cycle.

This example code works with an individual common anode and common cathode
RGB LED. If you have a transistor or constant current LED driver, you can
also use it to control an RGB LED strip or a higher power RGB LED.

We'll assume that you are using a common anode LEDs in the strip. For more
information checkout our tutorial: https://learn.sparkfun.com/tutorials/731

Notes: There are twelve rainbow colors (primary, secondary, tertiary).

Unlike digitalWrite(), which can be only HIGH (on) or LOW (off),

analogWrite() lets you smoothly change the brightness from @ (off) to 255 (fully on).
When analogWrite() is used with the RGB LED, you can create millions of colors!

For simplicity, we'll use 12 rainbow colors and white.

In the analogWrite() functions:
0 is off
128 is halfway on (used for the tertiary colors)
255 is full brightness.

========== TUTORIAL ==========
Non-Addressable RGB LED Strip Hookup Guide
https://learn.sparkfun.com/tutorials/731

Transistors | Applictions I: Switches
https://learn.sparkfun.com/tutorials/transistors/all#applications-i-switches

==================== PRODUCTS THAT USE THIS CODE ====================
LED RGB Strip (1M Bare) - https://www.sparkfun.com/products/12021
LED RGB Strip (1M Sealed) - https://www.sparkfun.com/products/12023
LED RGB Strip (5B Bare) - https://www.sparkfun.com/products/12022
LED RGB Strip (5M Sealed) - https://www.sparkfun.com/products/12024
Triple Output High Power RGB LED - https://www.sparkfun.com/products/15200

PicoBuck LED Driver - https://www.sparkfun.com/products/13705
N-Channel MOSFET Power Control Kit - https://www.sparkfun.com/products/12959

S====S============== HARDNARE CONNECTIONS S =================
The hardware connection depends on your hardware and setup. Below is one possible

arrangement.

RGB Common Anode LED Strip => BJT/MOSFET => Arduino PWM Pin
R pin => transistor => 5
G pin => transistor => 6
B pin => transistor => 9
- pin -

LICENSE: This code is released under the MIT License (http://opensource.org/licenses/MIT)

**/

//Debug mode, comment one of these lines out using a syntax
//for a single line comment ("//"):

//#define DEBUG © //© = LEDs only

#define DEBUG 1 //1 = LEDs w/ serial output

// Define our LED pins to a PWM Pin
#tdefine redPin 5

#define greenPin 6

#define bluePin 9

// Create integer variables for our LED color value
int redValue = 0;

int greenValue = 0;

int blueValue = ©;

// Define our Potentiometer to a Analog Pin for Brightness
// This is needed if you use a Potentiometer
#tdefine knobPin A@

//Create brightness variable
//Ranging from 0.0-1.0:

// 0.0 is off

// 0.5 is 50%

// 1.0 is fully on

float brightnessLED = 0.1;

//Create variables for type of LED and if it is used with a transistor

boolean commonAnode = false;

boolean commonCathode = true;//i.e.) When pin is HIGH, LED will also go HIGH without a transisto
r/PicoBuck

// Note:

// Common Anode LED is "~ commonAnode”

// Common Cathode LED is ~commonCathode”

// Common Anode RGB LED Strip with transistor is ~ !commonAnode”
// RGB High Power LED with PicoBuck is also ~ !commonAnode’
boolean rgbType = !commonAnode;

//Variables to keep track of color and pattern
int colorMode = @; //color mode to control LED color

int pattern = @; //pattern to turn off, stay on, fade, blink

//Variables for fading LED

int prevFadeval = 9;

int currentFadeVal = 9;

boolean increasing = true;

int fadeval = 5; //value to step when increasing/decreasing, recommended to be 1 or 5, larger nu
mbers will have problems lighting up

int fadeMAX = 255; //maximum fade value

int fadeMIN = ©; //minimum fade value

int fadeDelay = 30;//delay between each step

//Variables for blinking LED

int blinkval = 0;

boolean blinkON = false;

int counter = @; //use as a "delay"
int blinkRate = 750; //in milliseconds

//Variables to transition between RGB in a rainbow

int rainbowRedVal = 0;

int rainbowGreenVal = ©;

int rainbowBlueVal = 9;

int rainbowTransitionval = 0;

int rainbowDelay = 5; //in milliseconds to transition between colors

// You'll want to not make “rainbowDelay” too long as this will
// cause delays with button presses

//Button variables for color

const int buttonlPin = 2;

boolean buttonlState = false;
boolean prevbuttonlState = false;
boolean currentbuttonlState = false;

//Button variables for pattern
3;
false;

const int button2Pin
boolean button2State
boolean prevbutton2State = false;

boolean currentbutton2State = false;

void setup() {

// Make all of our LED pins outputs:
pinMode(redPin, OUTPUT);
pinMode(greenPin, OUTPUT);
pinMode(bluePin, OUTPUT);

if (rgbType == commonAnode) {
//set values 255 to turn off OFF if common anode

rainbowRedval = 255;
rainbowGreenVal = 255;
rainbowBlueVal = 255;

sequenceTest();//visually initialization

allOFF(); //make sure to initialize LEDs with it turned off
rgbCalc();//calculate for RGB type

rgbShow(); //make sure to show it happening

pinMode(buttonlPin, INPUT_PULLUP); //use internal pullup resistor with button
pinMode(button2Pin, INPUT_PULLUP); //use internal pullup resistor with button

#if DEBUG

Serial.begin(9600); //initialize Serial Monitor

//while (!Serial); // Comment out to wait for serial port to connect to Serial Monitor. Option
for native USB.

Serial.println("Custom Color Mixing Demo w/ an RGB LED. Toggling the buttons will adjust the c
olor and pattern.");

Serial.println(" ");

Serial.println("Note: Make sure to adjust the code for a common cathode or common anode.");

Serial.println("Default is set to no color and off!");

Serial.println(" ");
#endif

}//end setup()

void loop()

{
buttonlState = digitalRead(buttonlPin);// button for Color Mode

button2State = digitalRead(button2Pin);// button for Pattern

//==================== CHECK POTENTIOMETER FOR BRIGHTNESS ====================

//Uncomment the line below if you are using a potentiometer or photoresistor (i.e. light senso
r)

//brightnessLED = analogRead(knobPin) / 1023.0; //potentiometer for Brightness

/* Note: If you do not have a potentiometer or analog sensor attached,
the LEDs will flicker when the LED pulls a certain amount of power
due to the pin floating. Make sure to also GND the sensor close to your
Arduino to reduce the noise.

The LEDs can flicker at low values when using the fade mode. Make sure
to adjust the potentiometer to a certain brightness or fade values
for smooth fading.*/

/*
#if DEBUG
Serial.print(" Brightness Value % = ");

Serial.println(brightnessLED * 100);

#endif
*/
//:::::::::::::::::::: END CHECK POTENTIOMETER FOR BRIGHTNESS ====================
//==================== CHECK BUTTON FOR COLOR MODE ====================

//if button is pressed, it will be pulled low
if (buttonlState == LOW) {
currentbuttoniState = true; // button has been pressed once

if (prevbuttonlState != currentbuttonlState) { //check to see if button is still being press
ed
colorMode = colorMode + 1; //change color MODE after button has been pressed
#if DEBUG

Serial.print("Color Mode = ");

if (colorMode == 1) {
Serial.println("RED");

¥

else if (colorMode == 2) {
Serial.println("ORANGE");

¥

else if (colorMode == 3) {
Serial.println("YELLOW");

¥

else if (colorMode == 4) {
Serial.println("CHARTRUESE");

}

else if (colorMode == 5) {
Serial.println("GREEN");

}

else if (colorMode == 6) {
Serial.println("SPRING GREEN");

}

else if (colorMode == 7) {
Serial.println("CYAN");

}

else if (colorMode == 8) {
Serial.println("AZURE");

}

else if (colorMode == 9) {
Serial.println("BLUE");

}

else if (colorMode == 10) {
Serial.println("VIOLET");

}

else if (colorMode == 11) {
Serial.println("MAGENTA");

}

else if (colorMode == 12) {
Serial.println("ROSE");

}
else if (colorMode == 13) {

Serial.println("WHITE");
}
else {
Serial.println("OFF");

}
ttendif

//Cycle through colors when pressing buttons
if (colorMode < @ || colorMode > 13) {
//reset ledMode
colorMode = 9;

allOFF();

rgbCalc();

rgbShow();

}

}
else { //do nothing because finger is still on button
}
prevbuttonlState = currentbuttonlState;//update buttonl state

//button has not been pressed, it will be high
else {
currentbuttonlState = false;
prevbuttonlState = currentbuttonlState;//update buttonl state

}
//:::::::::::::::::::: END CHECK BUTTON FOR COLOR MODE ====================
//:::::::::::::::::::: CHECK BUTTON FOR PATTERN ====================

if (button2State == LOW) {
currentbutton2State = true; //button has been pressed once

if (prevbutton2State != currentbutton2State) { //check to see if button is still being press
ed

pattern = pattern + 1; //change LED pattern after button has been pressed

#if DEBUG

Serial.print("Pattern = ");

if (pattern == 1) {
Serial.println("ON");//print what pattern

}

else if (pattern == 2) {
Serial.println("FADE");//print what pattern

}

else if (pattern == 3) {
Serial.println("BLINK");//print what pattern

}

else if (pattern == 4) {
Serial.println("RAINBOW");//print what pattern

}

else {
Serial.println("OFF");//print what pattern

ttendif

if (pattern < @ || pattern > 4) {
//reset pattern
pattern = 9;

else { //do nothing because finger is still on button

}

prevbutton2State = currentbutton2State; //update button2 state
}

//button has not been pressed, it will be high
else {
currentbutton2State = false;
prevbutton2State = currentbutton2State; //update button2 state

}
switch (pattern) {

case
patternON();
break;

case
patternFade();
break;

case
patternBlink();
break;

case

patternRainbow();
break;

allOFF();
rgbCalc();
rgbShow();
break;

}//end loop

// ==================== CUSTOM FUNCTIONS DEFINED BELOW

void allOFF() {
// Black (all LEDs off)
// RGB LEDs:
redValue = 0;
greenValue = 0;
blueValue = 0;

}

void redON() {
// Red
redValue = 255;
greenValue = 0;

blueValue = 0;

void orangeON() {
// Orange
redValue = 255;
greenValue = 128;
blueValue = 0;

void yellowON() {
// Yellow
redValue = 255;
greenValue = 255;
blueValue = 9;

void chartrueseON() {
// Chartruese
redValue = 128;
greenValue = 255;
blueValue = 0;

void greenON() {
// Green
redValue = 0;
greenValue = 255;
blueValue = 0;

void springGreenON() {
// Spring Green
redValue = 0;
greenValue = 255;
blueValue = 128;

void cyanON() {

// Cyan

redValue = 0;
greenValue = 255;
blueValue = 255;

void azureON() {
// Azure
redValue = 0;
greenValue = 128;
blueValue = 255;

void blueON() {
// Blue
redValue = 0;
greenValue = 0;
blueValue = 255;

void violetON() {
// Violet
redValue = 128;
greenValue = 0;
bluevValue = 255;

void magentaON() A
// Magenta
redValue = 255;
greenValue = 0;
blueValue = 255;

void roseON() {
// Rose
redValue = 255;
greenValue = 0;
blueValue = 128;

void whiteON() {
// White (all LEDs on)
redvValue = 255;
greenValue = 255;
blueValue = 255;

R et sequenceTest()

void sequenceTest() {

FUNCTION

//used to visually check when Arduino is initialized
redON();

rgbCalc();

rgbShow();

delay(50);

orangeON();
rgbCalc();
rgbShow();
delay(50);

yellowON();
rgbCalc();
rgbShow();
delay(590);

chartrueseON();
rgbCalc();
rgbShow();
delay(50);

greenON();
rgbCalc();
rgbShow();
delay(50);

springGreenON();
rgbCalc();
rgbShow();
delay(50);

cyanON();

rgbCalc();
rgbShow();
delay(50);

azureON();
rgbCalc();
rgbShow();
delay(50);

blueON();

rgbCalc();
rgbShow();
delay(50);

violetON();
rgbCalc();
rgbShow();
delay(50);

magentaON();

rgbCalc();
rgbShow();
delay(50);

roseON();

rgbCalc();
rgbShow();
delay(50);

whiteON();
rgbCalc();
rgbShow();
delay(50);

allOFF();

rgbCalc();
rgbShow();
delay(590);

void rgbCalc() {
//use this to correctly light up LED depending on the setup
if (rgbType == commonAnode) {
/* If using a common anode LED, a pin
should turn ON the LED when the pin is LOW.*/
redvValue = 255 - redValue;
greenValue = 255 - greenValue;
blueValue = 255 - blueValue;

}
else {
/* If using a common cathode LED, an analog pin
should turn on the LED when the pin is HIGH. The
logic is flipped when using a Common Anode RGB LED
strip, NPN BJT/N-Channel MOSFET, and microcontroller

Leave RGB values as is, we're good!*/

redValue = int(redValue * brightnessLED);
greenValue = int(greenValue * brightnessLED);
blueValue = int(blueValue * brightnessLED);

void rgbShow() {
//once value is calculated, show the LED color
analogWrite(redPin, redvalue);
analogWrite(greenPin, greenValue);
analogWrite(bluePin, blueValue);

void patternON() {
// button is pressed, change LED color/sequence
switch (colorMode)
{
case

redON();
rgbCalc();
break;

case
orangeON();
rgbCalc();
break;

case
yellowON();
rgbCalc();
break;

case
chartrueseON();
rgbCalc();
break;

case
greenON();
rgbCalc();
break;

case
springGreenON();
rgbCalc();
break;

case
cyanON();
rgbCalc();
break;

case
azureON();
rgbCalc();
break;

case
blueON();
rgbCalc();
break;

case E
violetON();
rgbCalc();
break;

case m
magentaON();
rgbCalc();
break;

case
roseON();
rgbCalc();

break;

case E

whiteON();
rgbCalc();
break;

allOFF();
rgbCalc();

break;
}//end switch

rgbShow();

void patternFade() {

switch (colorMode) {
case [L:]//FADE RED
redValue = currentFadeVal;
greenValue = 0;
bluevValue = 9;

rgbCalc();
break;

case [2:]//FADE ORANGE
redValue = currentFadeVal;
greenValue = currentFadeval * 0.498; // 128/255 = ~0.498039
blueValue = 9;

rgbCalc();

if (redvalue > 0 && greenValue == 0) {
//tertiary component is 1/2, so when it calculates to decimal with fade value,
//it will be basically be off, make sure to turn off other color so that
//it does not just show the other color
redValue = 0;
}
// takes x amount of steps if you do not set it to zero for certain brightness (i.e. takes
8 more steps to turn off for 0.1)
//Serial.print("Red Value =");
//Serial.println(int((currentFadeVal) * brightnessLED));
//Serial.print("Green Value =");
//Serial.println(int((currentFadeval * ©.498) * brightnessLED));
break;

case [3:]//FADE YELLOW
redValue = currentFadeVal;
greenValue = currentFadeVal;
blueValue = 9;

rgbCalc();
break;

case [4:]//FADE CHARTRUESE
redValue = currentFadeVal * 0.498; // 128/255 = ~0.498039
greenValue = currentFadeVal;
blueValue = 9;

rgbCalc();

if (greenValue > 0 && redValue == 0) {
//tertiary component is 1/2, so when it calculates to decimal with fade value,
//it will be basically be off, make sure to turn off other color so that
//it does not just show the other color
greenValue = 0;

case [5:]//FADE GREEN
redValue = 0;
greenValue = currentFadeVal;
blueValue = 9;

rgbCalc();
break;

case [6:]//FADE SPRING GREEN
redValue = 0;
greenValue = currentFadeVal;
blueValue = currentFadeVal * ©.498; // 128/255 = ~0.498039

rgbCalc();

if (greenValue > 0 && blueValue == 9) {
//tertiary component is 1/2, so when it calculates to decimal with fade value,
//it will be basically be off, make sure to turn off other color so that
//it does not just show the other color
greenValue = 0;

case [7:]//FADE CYAN

redvValue = 0;
greenValue = currentFadeVal;
blueValue = currentFadeVal;

rgbCalc();
break;

case [8:]//FADE AZURE
redValue = 0;

greenValue = currentFadeval * ©.498; // 128/255 = ~0.498039
blueValue = currentFadeVal;

rgbCalc();
if (blueValue > © && greenValue == 0) {
//tertiary component is 1/2, so when it calculates to decimal with fade value,
//it will be basically be off, make sure to turn off other color so that
//it does not just show the other color
bluevValue = 9;

case [9:]//FADE BLUE
redvalue = 0;
greenValue = 0;
blueValue = currentFadeVal;

rgbCalc();
break;

case [10:]//FADE VIOLET
redValue = currentFadeVal * 0.498;
greenValue = 0;
bluevValue = currentFadeval;

rgbCalc();

if (bluevalue > 0 && redValue == 0) {
//tertiary component is 1/2, so when it calculates to decimal with fade value,
//it will be basically be off, make sure to turn off other color so that
//it does not just show the other color
bluevValue = 0;

case [11:]//FADE MAGENTA
redValue = currentFadeVal;
greenValue = 0;
blueValue = currentFadeVal;

rgbCalc();
break;

case [12:]//FADE ROSE

redValue = currentFadeVal;
greenValue = 0;
blueValue = currentFadeVal * 0.498;

rgbCalc();

if (redvalue > 0@ && blueValue == 0) {
//tertiary component is 1/2, so when it calculates to decimal with fade value,
//it will be basically be off, make sure to turn off other color so that
//it does not just show the other color
redValue = 0;

case [13:]//FADE WHITE

redValue = currentFadeVal;
greenValue = currentFadeVal;
blueValue = currentFadeval;

rgbCalc();
break;

allOFF();
rgbCalc();
break;

rgbShow();
delay(fadeDelay);

if (increasing == true) {
currentFadeVal += fadeVal;

}

else { //decreasing
currentFadeVal -= fadeVal;

if (currentFadeval > fadeMAX) {
increasing = false;
prevFadeval -= fadeval;//undo addition

currentFadeVal = prevFadeVal;

}
else if (currentFadeVal < fadeMIN) {

increasing = true;
prevFadeVal += fadeVal;//unto subtraction

currentFadeVal = prevFadeVal;

}

prevFadeVal = currentFadeval;
Y /mmmmmmm e e END patternFade() FUNCTION --------------------
R et patternBlink() FUNCTION --------------------

void patternBlink() {

switch (colorMode) {

case //RED

redValue = blinkVal;
greenValue = 0;
blueValue = 0;

rgbCalc();
break;

case [2:]//ORANGE
redValue = blinkVal;
greenValue = blinkVal * @.498;

blueValue = 9;

rgbCalc();
break;

case [3:]//YELLOW
redValue = blinkVal;

greenValue = blinkVal;
blueValue = 9;

rgbCalc();
break;

case [4:]//CHARTREUSE
redValue = blinkVal * 0.498;
greenValue = blinkVal;
blueValue = 9;

rgbCalc();
break;

case //GREEN

redvValue = 0;
greenValue = blinkVal;
blueValue = 9;

rgbCalc();
break;

case [6:]//SRING GREEN
redvValue = 0;
greenValue = blinkVal;
blueValue = blinkval * ©.498;

rgbCalc();
break;

case //CYAN
redValue = 0;
greenValue = blinkVal;
blueValue = blinkVal;

rgbCalc();
break;

case [8:]//AZURE

redvalue = 0;
greenValue = blinkVal * 0.498;
blueValue = blinkval;

rgbCalc();
break;

case //BLUE

redvalue = 0;
greenValue = 0;
blueValue = blinkval;

rgbCalc();
break;

case [10:]//VIOLET

redvValue = blinkVal * ©.498;
greenValue = 0;
blueValue = blinkVval;

rgbCalc();
break;

case [L1:]//MAGENTA

redvalue = blinkVal;
greenValue = 0;
blueValue = blinkVal;

rgbCalc();
break;

case //ROSE

redvValue = blinkVal;
greenValue = 0;
blueValue = blinkval * ©.498;

rgbCalc();
break;

case [13:]//WHITE
redvValue = blinkVal;
greenValue = blinkVal;
blueValue = blinkVal;

rgbCalc();
break;

allOFF();
rgbCalc();
break;

rgbShow();

if (counter == blinkRate) {

if (blinkON == true) {
blinkVal = 0;
blinkON = false;

}

else { //it was on, so turn off
blinkval = 255;
blinkON = true;

}
counter = 0;
}
else {
counter = counter + 1;
}
Y/ /- - patternBlink() FUNCTION //--------------------
R T patternRainbow() FUNCTION --------------------

void patternRainbow() {
if (rgbType == commonCathode) {
if (rainbowTransitionval == 9) {
//RED
rainbowRedVal += 5;
if (rainbowRedVal >= 255) {
rainbowTransitionval = 1;

}

else if (rainbowTransitionVal == 1) {
//RED TO ORANGE TO YELLOW
rainbowGreenvVal += 5;

if (rainbowGreenval >= 255) {
rainbowTransitionval = 2;

}
}

else if (rainbowTransitionval == 2) {
//YELLOW to CHARTREUSE to GREEN
rainbowRedVal -= 5;

if (rainbowRedVal <= 0) {
rainbowTransitionval = 3;

}

else if (rainbowTransitionval == 3) {
//GREEN to SPRING GREEN to CYAN
rainbowBlueVal += 5;

if (rainbowBlueVal >= 255) {
rainbowTransitionval = 4;
}
}

else if (rainbowTransitionval == 4) {
//CYAN to AZURE to BLUE
rainbowGreenvVal -= 5;

if (rainbowGreenval <= 0) {
rainbowTransitionval = 5;

}

else if (rainbowTransitionval == 5) {
//BLUE to VIOLET to MAGENTA
rainbowRedVal += 5;

if (rainbowRedVal »>= 255) {
rainbowTransitionval = 6;

}
}

else if (rainbowTransitionval == 6) {
//MAGENTA to ROSE to RED
rainbowBlueVal -= 5;

if (rainbowBlueVval <= @) {
rainbowTransitionval = 1;

}

}//end check for commonCathode

else {

if (rainbowTransitionval == @) {
//RED
rainbowRedVal -= 5;

if (rainbowRedVal <= 0) {
rainbowTransitionval = 1;

}

else if (rainbowTransitionval == 1) {
//RED TO ORANGE TO YELLOW
rainbowGreenvVal -= 5;

if (rainbowGreenval <= 0) {
rainbowTransitionval = 2;

}

else if (rainbowTransitionVal == 2) {
//YELLOW to CHARTREUSE to GREEN
rainbowRedVal += 5;

if (rainbowRedVal >= 255) {
rainbowTransitionval = 3;

}

else if (rainbowTransitionval == 3) {
//GREEN to SPRING GREEN to CYAN
rainbowBlueVal -= 5;

if (rainbowBlueVal <= 0) {
rainbowTransitionval = 4;

}

else if (rainbowTransitionval == 4) {
//CYAN to AZURE to BLUE
rainbowGreenVal += 5;

if (rainbowGreenval >= 255) {
rainbowTransitionVal = 5;

}

else if (rainbowTransitionval == 5) {
//BLUE to VIOLET to MAGENTA
rainbowRedVal -= 5;

if (rainbowRedVal <= 0) {
rainbowTransitionval = 6;

}

else if (rainbowTransitionval == 6) {
//MAGENTA to ROSE to RED

rainbowBlueVal += 5;

if (rainbowBlueVal >= 255) {
rainbowTransitionVval = 1;
}
}

}//end check for commonAnode

redValue = int(rainbowRedVal * brightnessLED);
greenValue = int(rainbowGreenVal * brightnessLED);
blueValue = int(rainbowBluevVal * brightnessLED);

// Note: the rainbow function calculates the function here so
// we do not need to call the “rgbCalc()" function

rgbShow();

delay(rainbowDelay);
Y /- END patternRainbow() FUNCTION --------------------
// S=================== END CUSTOM FUNCTIONS DEFINED S===================

Once the code has been uploaded, the demo will cycle through the defined colors. Pressing the buttons will cycle
through the color or pattern. Opening the Arduino serial monitor at 9600 will show the current color mode or
pattern after every button press.

Modifying RGB LED Strip

Depending on your project, you may not need to use all 1M or 5M of the LED strip. You can cut off the excess and
use it for other projects. Or you may need to separate the strip and extend the wires to illuminate other parts of
your project. You may even need to inject power at a certain length. Let's go over how to cut, rewire, clean, and
reseal a sealed LED strip.

Note: We will be modifying the LED strip using male jumper wires to connect to a breadboard. To make it
easier to disconnect and reconnect the strips to your system, you could use a 4-pin polarized connector and
a 1M sealed strip. You can also solder wire.

Hook-Up Wire - Assortment (Solid Core, 22 LED Strip Pigtail Connector (4-pin)
AWG) @© CAB-14576
@© PRT-11367

s

Jumper Wires Premium 6" M/M - 20 AWG (10
Pack)
® PRT-11709

First, cut the LED strip at the center of the exposed pads using a diagonal cutter. The dot and dashed line in the
image below is where you will need to perform the cut. Make sure to remove part of the silicone tube to access the
LED strip's pads if you are using the sealed version.

Cut half of the premium jumper wires and strip the insulation. Then solder the wires to each of the LED strip's
pads.

For a secure connection, you can braid the wires together to manage the connections. To braid your wires, twist a
pair of wires in a counterclockwise pattern between your index finger and thumb using both hands. We'll be using
the green and red wires that were soldered on.

Then twist the other pair of wires in a counterclockwise pattern.

Twist the pairs of wires in a clockwise pattern.

Clean Solder Joints

If you were using water soluble flux, clean the solder joints with deionized water and a toothbrush. Dry the LED
strips thoroughly using compressed air. Luckily, SparkFun has a PCB cleaning room. As an alternative, you could
use water from the sink and towels. You can also use isopropyl alcohol.

Test LED Strips

Once dry, test the LED strips to ensure the colors are correct and the wires are connected to its respective pads.
You can use a benchtop power supply set to output about 12V, a 12V wall adapter, or 9V battery to verify the
connection. The image below shows all the channels turned on. Make sure to test each channel individually.

Secure w/ Hot Glue or Heat Shrink

Add hot glue to the terminals to secure the wires further. You can also use some heat shrink with hot glue as long
as it does not cover the LED. The image below shows the wires being secured with hot glue. The LED strip was
used with a silicone tube so additional hot glue was added to seal the exposed strip.

_\(

A) .

Tip: To smooth out the glue on the wires and LED strip, try using a little hot air from a heat gun or hot air
rework station.

Large Installation
For large installation projects, there may be voltage drops depending on the:

« amount of LEDs connected
» length of LED strip used

» how bright the LEDs are set
* animation

You may notice LEDs not able to fully turn on after a certain length due to the voltage drop. This is due to the
increased resistance as you move further away from the power supply. You may notice that not all the colors are
turned on or the strip becomes dim. You can also check the voltage after each meter using a multimeter to see if
there are any voltage drops if you are not able to visually see the voltage drops. If you see voltage drops and the
LED strip not properly turning on, you will need to inject power with the power supply between each LED strip's
Vcc and GND after about 1, 2, or 5 meters.

Long lengths of LED strips can also pull a lot of current when fully turned on. If you are using a high amperage
power supply with long lengths, make sure that there is enough air flow, a heat sink to dissipate the heat properly,
and the wires can support the amperage. You may want to lower the brightness setting.

Resources and Going Further

Now that you've successfully got your non addressable LED strip up and running, it's time to incorporate it into
your own project! For more information, check out the resources below:

» Datasheet (PDF) - 5060 LED that are populated on the LED strips
» GitHub Code Repo

Need some inspiration for your next project? Check out some of these related tutorials:

Prototype Wearable LED Dance Harness Motion Controlled Wearable LED Dance

A project tutorial to add an extra effect for dancers Harness

performing a choreographed piece. The harness can Control LEDs based on your movement using an

be added quickly under a costume. accelerometer! Make your LEDs breathe by fading in

and out when laying on the floor, turn off the LEDs
when moving to your side, or make the LEDs blink in a
headstand!

Interactive 3D Printed LED Diamond Prop

In this tutorial, we will learn about how to create an
interactive theatrical prop for a performance by 3D
printing a translucent diamond prop using a non-
addressable RGB LED strip and AT42QT1011
capacitive touch sensing.

Light Up Your 3D Printer's Bed

Having issues viewing your print in a dark lit room? In
this tutorial, we will be using LED strips to light up a
print bed's area on a LulzBot 3D printer!

Or try adding a button, potentiometer, or sensor to control the LEDs. Here are a few examples to control an

individual RGB LED with different languages.

SparkFun Inventor's Kit for Photon Experiment
Guide
Dive into the world of the Internet of Things with the

SparkFun Inventor's Kit for Photon.

Getting Started with MicroPython and the
SparkFun Inventor's Kit for micro:bit
Learn MicroPython with the micro:bit.

SparkFun Inventor's Kit for micro:bit Experiment
Guide
This guide contains all the information you will need to

explore the twelve circuits of the SparkFun Inventors
Kit for micro:bit.

SparkFun Inventor's Kit Experiment Guide - v4.1
The SparkFun Inventor's Kit (SIK) Experiment Guide
contains all of the information needed to build all five
projects, encompassing 16 circuits, in the latest version
of the kit, v4.1.

Alternative Code and Color Blending: The code used in this tutorial is only one method of controlling
analog RGBs. There are other methods to mathematically fade colors and control RGB LEDs. For more
information, check out the following examples and libraries.

¢ Arduino.cc: Color Crossfader
» FastLED Arduino Library

» GitHub: RGBLEDBIender Library
» GitHub: RGBLed Library

Or check out some of these blog posts for ideas:

Engineering Thursday: LED Light Boxes Mathematical Color Fading
JULY 18, 2013 DECEMBER 26, 2018

Want to be the first to know about new LED guides, products and projects?

Sign up to receive updates!
Email*

Would you also like to subscribe to SparkFun's weekly newsletter?

(J Yes, sign me up!

