Power MOSFET # 40 V, 7.5 m Ω , 86 A, Single N-Channel, SO-8FL #### **Features** - Low R_{DS(on)} - Low Capacitance - Optimized Gate Charge - AEC-Q101 Qualified and PPAP Capable - NVMFS5833NWF Wettable Franks Option for Enhanced Optical Inspection - These Devices are Pb-Free and are RoHS Compliant # **MAXIMUM RATINGS** (T_J = 25°C unless otherwise noted) | Parameter | | | Symbol | Value | Unit | |---|--|-------------------------|-----------------------------------|---------------|------| | Drain-to-Source Voltage | | | V_{DSS} | 40 | V | | Gate-to-Source Voltage | Gate-to-Source Voltage | | | ±20 | V | | Continuous Drain Cur- | | $T_{mb} = 25^{\circ}C$ | I _D | 86 | Α | | rent $R_{\Psi J-mb}$ (Notes 1, 2, 3 & 4) | Steady | T _{mb} = 100°C | | 61 | | | Power Dissipation | State | T _{mb} = 25°C | P _D | 112 | W | | R _{ΨJ-mb} (Notes 1, 2, 3) | | $T_{mb} = 100^{\circ}C$ | | 56 | | | Continuous Drain Cur- | | T _A = 25°C | I _D | 16 | Α | | rent R _{θJA}
(Notes 1, 3 & 4) | Steady | T _A = 100°C | | 11 | | | Power Dissipation | State | T _A = 25°C | P _D | 3.7 | W | | R _{θJA} (Notes 1 & 3) | | T _A = 100°C | | 1.8 | | | Pulsed Drain Current | $T_A = 25^{\circ}C$, $t_p = 10 \mu s$ | | I _{DM} | 324 | Α | | Operating Junction and Storage Temperature | | | T _J , T _{stg} | -55 to
175 | °C | | Source Current (Body Diode) | | | IS | 86 | Α | | Single Pulse Drain-to-Source Avalanche
Energy (T _J = 25°C, I _{L(pk)} = 36 A, L = 0.1 mH) | | | E _{AS} | 65 | mJ | | Lead Temperature for Soldering Purposes (1/8" from case for 10 s) | | | T _L | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL RESISTANCE MAXIMUM RATINGS | Parameter | Symbol | Value | Unit | |---|-----------------|-------|------| | Junction-to-Mounting Board (top) - Steady
State (Notes 2, 3) | $R_{\Psi J-mb}$ | 1.3 | °C/W | | Junction-to-Ambient - Steady State (Note 3) | $R_{\theta JA}$ | 41 | | - The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. - 2. Psi (Ψ) is used as required per JESD51-12 for packages in which substantially less than 100% of the heat flows to single case surface. - 3. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad. - 4. Continuous DC current rating. Maximum current for pulses as long as 1 second are higher but are dependent on pulse duration and duty cycle/ ### ON Semiconductor® #### http://onsemi.com | V _{(BR)DSS} | R _{DS(ON)} MAX | I _D MAX | |----------------------|-------------------------|--------------------| | 40 V | 7.5 mΩ @ 10 V | 86 A | SO-8 FLAT LEAD CASE 488AA STYLE 1 Α 5833 = Specific Device Code = N (NVMFS5833N) or WF (NVMFS5833NWF) = Assembly Location = Year W = Work Week 77 = Lot Traceability #### ORDERING INFORMATION | Device | Package | Shipping [†] | |-----------------|---------------------|-----------------------| | NVMFS5833NT1G | SO-8FL
(Pb-Free) | 1500 /
Tape & Reel | | NVMFS5833NT3G | SO-8FL
(Pb-Free) | 5000 /
Tape & Reel | | NVMFS5833NWFT1G | SO-8FL
(Pb-Free) | 1500 /
Tape & Reel | | NVMFS5833NWFT3G | SO-8FL
(Pb-Free) | 5000 /
Tape & Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. # **ELECTRICAL CHARACTERISTICS** (T_J = 25°C unless otherwise specified) | Symbol | Test Condition | | Min | Тур | Max | Unit | |--------------------------------------|---|------------------------|--|---|--|---| | - | | | | • | | • | | V _{(BR)DSS} | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ | | 40 | | | V | | V _{(BR)DSS} /T _J | | | | 32.6 | | mV/°C | | I _{DSS} | $V_{GS} = 0 \text{ V},$ $T_{J} = 25^{\circ}\text{C}$ | | | | 1.0 | μΑ | | | $V_{DS} = 40 \text{ V}$ | T _J = 125°C | | | 100 | 7 | | I _{GSS} | V _{DS} = 0 V, V _{GS} = | ±20 V | | | ±100 | nA | | | | | | | | | | V _{GS(TH)} | $V_{GS} = V_{DS}, I_D = 1$ | 250 μΑ | 2.0 | | 3.5 | V | | V _{GS(TH)} /T _J | | | | -7.6 | | mV/°C | | R _{DS(on)} | V _{GS} = 10 V, I _D = | = 40 A | | 6.2 | 7.5 | mΩ | | 9FS | $V_{DS} = 5 \text{ V}, I_{D} = 5 \text{ A}$ | | | 38 | | S | | | | | | • | | • | | C _{iss} | $V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz, V}_{DS} = 25 \text{ V}$ | | | 1714 | | pF | | C _{oss} | | | | 210 | | 1 | | C _{rss} | | | | 144 | | 1 | | Q _{G(TOT)} | $V_{GS} = 10 \text{ V}, V_{DS} = 32 \text{ V},$ $I_{D} = 40 \text{ A}$ | | | 32.5 | | nC | | Q _{G(TH)} | | | | 2.77 | | | | Q _{GS} | | | | 7.37 | | | | Q_{GD} | | | | 9 | | | | ote 6) | | | | • | | • | | t _{d(on)} | | | | 10.23 | | ns | | t _r | V_{GS} = 10 V, V_{DS} = 20 V,
I_D = 40 A, R_G = 2.5 Ω | | | 19.5 | | | | t _{d(off)} | | | | 23.60 | | | | t _f | | | | 3.00 | | | | ERISTICS | | | | • | | • | | V_{SD} | V _{GS} = 0 V,
I _S = 40 A | $T_J = 25^{\circ}C$ | | 0.85 | 1.2 | V | | | | T _J = 125°C | | 0.7 | | 1 | | t _{RR} | $V_{GS} = 0 \text{ V, } d_{IS}/d_t = 100 \text{ A/}\mu\text{s,}$ $I_S = 40 \text{ A}$ | | | 23.5 | | ns | | t _a | | | | 13.5 | | | | | | | | - | | -1 | | t _b | $I_S = 40 A$ | | | 10 | | | | | V(BR)DSS V(BR)DSS/TJ IDSS IGSS VGS(TH) VGS(TH)/TJ RDS(on) GFS Coss Crss QG(TOT) QGS QGD ote 6) td(on) tr td(off) tf ERISTICS VSD | V(BR)DSS | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{ c c c c }\hline V_{(BR)DSS} & V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A} & 40\\ \hline V_{(BR)DSS}/T_J & & & & & & & & & & & & & & & & & & &$ | $\begin{array}{ c c c c c }\hline V_{(BR)DSS} & V_{GS} = 0 \ V, \ I_{D} = 250 \ \mu A & 40 \\ \hline V_{(BR)DSS}/T_{J} & 32.6 \\ \hline I_{DSS} & V_{GS} = 0 \ V, \\ V_{DS} = 40 \ V & T_{J} = 25^{\circ}C \\ \hline I_{GSS} & V_{DS} = 0 \ V, V_{GS} = \pm 20 \ V \\ \hline \hline V_{GS(TH)} & V_{GS} = V_{DS}, \ I_{D} = 250 \ \mu A & 2.0 \\ \hline V_{GS(TH)}/T_{J} & -7.6 \\ \hline R_{DS(on)} & V_{GS} = 10 \ V, \ I_{D} = 40 \ A & 6.2 \\ \hline g_{FS} & V_{DS} = 5 \ V, \ I_{D} = 5 \ A & 38 \\ \hline \hline C_{iss} & V_{GS} = 0 \ V, \ f = 1.0 \ MHz, \ V_{DS} = 25 \ V & 210 \\ \hline C_{rss} & 144 \\ \hline Q_{G(TOT)} & 32.5 \\ \hline Q_{GS} & 10 \ V, \ V_{DS} = 32 \ V, \\ \hline Q_{GS} & 9 \\ \hline ote 6) & 10.23 \\ \hline t_{f} & V_{GS} = 10 \ V, \ V_{DS} = 20 \ V, \\ \hline I_{D} = 40 \ A, \ R_{G} = 2.5 \ \Omega & 23.60 \\ \hline t_{f} & 3.00 \\ \hline ERISTICS & V_{GS} = 0 \ V, \ d_{IS}/d_{I} = 100 \ A/us. & 13.5 \\ \hline \end{array}$ | $\begin{array}{ c c c c c }\hline V_{(BR)DSS} & V_{GS} = 0 \text{ V, } I_D = 250 \ \mu\text{A} & 40 \\ \hline V_{(BR)DSS}/T_J & 32.6 \\ \hline \\ I_{DSS} & V_{GS} = 0 \text{ V, } \\ V_{DS} = 40 \text{ V} & \hline \\ T_J = 125^{\circ}\text{C} & 1.0 \\ \hline \\ I_{GSS} & V_{DS} = 0 \text{ V, } V_{GS} = \pm 20 \text{ V} & \pm 100 \\ \hline \\ V_{GS(TH)} & V_{GS} = V_{DS}, \ I_D = 250 \ \mu\text{A} & 2.0 & 3.5 \\ \hline \\ V_{GS(TH)}/T_J & -7.6 & \\ \hline \\ R_{DS(on)} & V_{GS} = 10 \text{ V, } I_D = 40 \text{ A} & 6.2 & 7.5 \\ \hline \\ g_{FS} & V_{DS} = 5 \text{ V, } I_D = 5 \text{ A} & 38 \\ \hline \\ \hline \\ C_{iss} & \\ C_{oss} & \\ C_{rss} & 1444 & \\ \hline \\ Q_{G(TOT)} & 32.5 & \\ \hline \\ Q_{G} & 10 \text{ V, } V_{DS} = 32 \text{ V, } \\ I_D = 40 \text{ A} & 7.37 & \\ \hline \\ Q_{GS} & 9 & \\ \hline \\ t_f & V_{GS} = 10 \text{ V, } V_{DS} = 20 \text{ V, } \\ I_D = 40 \text{ A, } R_G = 2.5 \ \Omega & 23.60 \\ \hline \\ t_f & 3.00 & \\ \hline \\ ERISTICS & \\ \hline \\ t_8 & V_{GS} = 0 \text{ V, } d_{Is}/d_I = 100 \text{ A/us.} & 13.5 \\ \hline \end{array}$ | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width = 300 μs, duty cycle ≤ 2%. 6. Switching characteristics are independent of operating junction temperatures. #### TYPICAL CHARACTERISTICS $\label{eq:TJ} \textbf{JUNCTION TEMPERATURE (°C)} \\ \textbf{Figure 5. On-Resistance Variation with} \\ \textbf{Temperature} \\$ V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) Figure 6. Drain-to-Source Leakage Current vs. Voltage #### **TYPICAL CHARACTERISTICS** Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. Avalanche Characteristics # **TYPICAL CHARACTERISTICS** Figure 13. Thermal Response DFN5 5x6, 1.27P (SO-8FL) CASE 488AA ISSUE N #### **DATE 25 JUN 2018** #### NOTES: - DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETER. DIMENSION D1 AND E1 DO NOT INCLUDE - MOLD FLASH PROTRUSIONS OR GATE BURRS | | MILLIMETERS | | | | | |-----|-------------|-------|------|--|--| | DIM | MIN | NOM | MAX | | | | Α | 0.90 | 1.00 | 1.10 | | | | A1 | 0.00 | | 0.05 | | | | b | 0.33 | 0.41 | 0.51 | | | | С | 0.23 | 0.28 | 0.33 | | | | D | 5.00 | 5.15 | 5.30 | | | | D1 | 4.70 | 4.90 | 5.10 | | | | D2 | 3.80 | 4.00 | 4.20 | | | | E | 6.00 | 6.15 | 6.30 | | | | E1 | 5.70 | 5.90 | 6.10 | | | | E2 | 3.45 | 3.65 | 3.85 | | | | е | 1.27 BSC | | | | | | G | 0.51 | 0.575 | 0.71 | | | | K | 1.20 | 1.35 | 1.50 | | | | L | 0.51 | 0.575 | 0.71 | | | | L1 | 0.125 REF | | | | | | M | 3.00 | 3.40 | 3.80 | | | | θ | 0 ° | | 12 ° | | | #### **GENERIC MARKING DIAGRAM*** XXXXXX = Specific Device Code = Assembly Location Α Υ = Year W = Work Week = Lot Traceability ZZ *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking. **DETAIL** A *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. | DOCUMENT NUMBER: | 98AON14036D | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|--------------------------|---|-------------|--| | DESCRIPTION: | DFN5 5x6, 1.27P (SO-8FL) | | PAGE 1 OF 1 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales